集美阅读大全是一个以文章句子为主题的在线阅读网站。内含有各种经典好文章,爱情美文,诗歌散文,情感句子说说,范文资料等。读好文章,尽在集美阅读大全!!!
当前位置:集美阅读大全 >范文 >总结 > 正文

什么是抽屉原理

2020-03-03 00:41抽屉 原理 什么

什么是抽屉原理

  学习总结一:

  什么是抽屉原理?

  (1)举例

  桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉能够放一个,有的能够放两个,有的能够放五个,但最终我们会发现至少我们能够找到一个抽屉里面至少放两个苹果。[由整理]

  (2)定义

  一般状况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。

  学习总结二:

  抽屉原理是什么

  桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就能够代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

  第一抽屉原理

  原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

  证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

  原理2:把多于mn(m乘以n)(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

  证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

  原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

  原理1、2、3都是第一抽屉原理的表述。

  第二抽屉原理

  把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

  在上方的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,。。。,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

  抽屉原理的一种更一般的表述为:

  “把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么必须有一个抽屉中放进了至少k+1个东西。”

  利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”正因任一整数除以3时余数只有0、1、2三种可能,因此7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

  如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

  “把无限多个东西任意分放进n个空抽屉(n是自然数),那么必须有一个抽屉中放进了无限多个东西。”

  学习总结三:

  抽屉原理

  知识要点

  抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

  把3个苹果放进2个抽屉里,必须有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它能够解决一些相当复杂甚至无从下手的问题。

  原理1:把n+1个元素分成n类,不管怎样分,则必须有一类中有2个或2个以上的元素。

  原理2:把m个元素任意放入n(n<m=个集合,则必须有一个集合呈至少要有k个元素。

  其中k=(当n能整除m时)

  〔〕+1(当n不能整除m时)

  (〔〕表示不大于的最大整数,即的整数部分)

  原理3:把无穷多个元素放入有限个集合里,则必须有一个集合里内含无穷多个元素。

  应用抽屉原明白题的步骤

  第一步:分析题意。分清什么是"东西",什么是"抽屉",也就是什么作"东西",什么可作"抽屉"。

  第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关联,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

  第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

  例1、教室里有5名学生正在做作业,这天只有数学、英语、语文、地理四科作业

  求证:这5名学生中,至少有两个人在做同一科作业。

  证明:将5名学生看作5个苹果

  将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉

  由抽屉原理1,必须存在一个抽屉,在这个抽屉里至少有2个苹果。

  即至少有两名学生在做同一科的作业。

  例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

  解:把3种颜色看作3个抽屉

  若要贴合题意,则小球的数目务必大于3

  大于3的最小数字是4

  故至少取出4个小球才能贴合要求

  答:最少要取出4个球。

  例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

  解:把50名学生看作50个抽屉,把书看成苹果

  根据原理1,书的数目要比学生的人数多

  即书至少需要50+1=51本

  答:最少需要51本。

  例4、在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

  解:把这条小路分成每段1米长,共100段

  每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果

  于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果

  即至少有一段有两棵或两棵以上的树

  例5、11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不一样类的书,最少借一本

  试证明:必有两个学生所借的书的类型相同

  证明:若学生只借一本书,则不一样的类型有A、B、C、D四种

  若学生借两本不一样类型的书,则不一样的类型有AB、AC、AD、BC、BD、CD六种

  共有10种类型

  把这10种类型看作10个"抽屉"

  把11个学生看作11个"苹果"

  如果谁借哪种类型的书,就进入哪个抽屉

  由抽屉原理,至少有两个学生,他们所借的书的类型相同

  例6、有50名户外员进行某个项目的单循环赛,如果没有平局,也没有全胜

  试证明:必须有两个户外员积分相同

  证明:设每胜一局得一分

  由于没有平局,也没有全胜,则得分状况只有1、2、3。。。。。。49,只有49种可能

  以这49种可能得分的状况为49个抽屉

  现有50名户外员得分

  则必须有两名户外员得分相同

  例7、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

  解题关键:利用抽屉原理2。

  解:根据规定,多有同学拿球的配组方式共有以下9种:

  {足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}

  以这9种配组方式制造9个抽屉

  将这50个同学看作苹果

  =5。5。。。。。。5

  由抽屉原理2k=〔〕+1可得,至少有6人,他们所拿的球类是完全一致的

课后答案张九龄《望月怀远》阅读答案及全诗翻译赏析

望月怀远张九龄海上生明月,天涯共此时。情人怨遥夜,竟夕起相思。灭烛怜光满,披衣觉露滋。不堪盈手赠,还寝梦佳期。注释⑴怀远:怀念远方的亲人。⑵最前面两句:辽阔无边的大海上升起一轮明月,使人想起了远在天涯……
2023-11-22 04:53暂无评论阅读详情

课后答案王安石《次韵唐公三首其三旅思》阅读答案

次韵唐公三首其三旅思王安石此身南北老,愁见问征途。地大蟠三楚,天低入五湖。看云心共远,步月影同孤。慷慨秋风起,悲歌不为鲈②。注:①张壤,字唐公,北宋嘉佑六年契丹国母生辰使,王安石友人。②《晋书&mid……
2023-11-22 04:52暂无评论阅读详情

笔记心得各级干部学习执法为民心得体会

  “各级干部都要牢固树立全心全意为人民服务的思想和真心实意对人民负责的精神,做到心里装着群众,凡事想着群众,工作依靠群众,一切为了群众。要坚持权为民所用,情为民所系,利为民所谋,为群众诚……
2023-11-22 04:12暂无评论阅读详情

笔记心得寒假大学生社会实践心得体会

  自从走进了大学,就业问题就似乎总是围绕在我们的身边,成了说不完的话题。在现今社会,招聘会上的大字报都总写着“有经验者优先”,可还在校园里面的我们这班学子社会经验又会拥有多少……
2023-11-22 04:08暂无评论阅读详情

协议书济南市某美容院转让协议第2篇

  __________美容院根据中华人民共和国国务院劳动法规和________市私营企业劳动管理实施办法,结合本美容院经营的具体所需今制订此劳动合同书。  双……
2023-11-22 02:36暂无评论阅读详情

剧本劳模宣传短剧剧本《阿咪也想当劳模》

  1、机械厂门卫处,日,外。  清早,机械厂班长李玉伟开着别克赛欧小汽车驶进厂区,门卫室内的保安一边按开电动门,一边朝李玉伟摆手。  李玉伟:(摇下车窗,笑着打招呼)小秦,早。  保安小秦:(笑着)……
2023-11-22 02:11暂无评论阅读详情

教程灰雀说课稿

灰雀说课稿  灰雀说课稿(一):  《灰雀》说课稿  一、说教材  《灰雀》是义务教育课程标准实验教科书,小学语文第五册第二单元的一篇讲读课文。这篇课文记叙了列宁在莫斯科郊外养病期间爱护灰雀的故事。列……
2023-11-22 00:41暂无评论阅读详情

课件“吴隐之字处默,濮阳鄄城人”阅读答案及原文

吴隐之字处默,濮阳鄄城人。美姿容,善谈论,博涉文史,以儒雅标名。弱冠而介立,有清操,虽儋石无储,不取非其道。事母孝谨,及其执丧,哀毁过礼。与太常韩康伯邻居,康伯母,贤明妇人也,每闻隐之哭声,辍餐投箸,……
2023-11-22 00:38暂无评论阅读详情

标签